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In this paper a theoretical and experimental analysis of the wave energy
transmission in structures is proposed, aimed at introducing a new point of view
about energy exchange in dynamical systems. A systematic asymptotic analysis,
based on the concept of wavelength scale e!ect, is developed, in which
a simultaneous time- and space-average energy along the structure is considered.
The analytical approach highlights di!erent scale laws in the energy transmission
mechanism. The k parameter, related to the ratio between a characteristic
space-average length and the wavelength, controls this characteristic scale. In the
small-scale transmission range (k(1), a vibration conductivity principle fails for
every type of considered structure. On the other hand, in the large-scale range
(kA1), an asymptotic thermal energy behaviour is found for one-dimensional
systems. The plate energy does not indeed obey a thermal law. A physical
explanation of these di!erent behaviours is proposed and two types of basic energy
interactions between waves are identi"ed, leading to di!erent energy contributions:
the coincident wave energy and the interference wave energy, with totally di!erent
asymptotic features. In fact, the coincident wave energy asymptotically tends to
satisfy the energy balance in a thermal form over the k large-scale range. The
interference energy indeed exhibits a complex behaviour: only part of its
non-thermal contribution asymptotically vanishes, but another persists even in the
large k scale range.

( 1999 Academic Press
1. INTRODUCTION

The problem of energy transmission in dynamical systems is important from
a practical and theoretical point of view. When dealing with high-frequency
dynamics, the standard methods of analysis based upon discretization techniques,
fail. This is not only due to the computational cost that extends over reasonable
limits, but also because the analysis reliability becomes in-signi"cant due to the
0022-460X/99/370253#32 $30.00/0 ( 1999 Academic Press
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uncertainties in the model parameters [1}3]. High-frequency dynamics involves
nowadays a wide class of engineering applications. Structure-borne sound
transmission problems are encountered in ship, aircraft and car design due to the
requirements of weight reduction, better economy and increasing power set up on
board (high-speed marine vehicles, jet aircrafts, rockets, etc.).

In this "eld, statistical energy analysis (SEA) [4] is at present the most widely
acknowledged contribution. Based on the thermal exchange of mechanical energy
among coupled dynamic systems, SEA provides information on the stored and the
dissipated energy and on the transmitted power between modal subsystems.

In spite of the simplicity of this energetic formulation, which makes it particularly
attractive, research on providing a solid theoretical basis of the SEA instances has
required, and still requires, much attention by the scienti"c community. Although
some relevant studies [5}9] have been developed on this topic and some points
begin to be "rm, the problem is still far from being de"nitely solved and free from
controversies [6, 10}12].

In these last 10 years, several methods have been developed to meet new
requirements. A large part of them, at least in the beginning, have been inspired by
SEA thermal assumptions [13}15]. In these methods, extension of the original SEA
statements is made. While in SEA the energy transmission between complex
structures of "nite size is considered, in the new approaches the same relationships
are directly translated into di!erential form. In the rest of this paper, the common
idea of these approaches in called the thermal analogy or vibration conductivity
principle.

It is reasonable that all the doubts and uncertainties a!ecting the sphere of SEA
have been transferred to the thermal analogy, with the aggravating circumstance
that the local formulation posing totally new problems, that pass beyond the
critical SEA limitations.

Other proposed approaches are indeed not conductivity based, even if they
involve energy concepts [16}22]. Finally other methods, not involving energy
concepts, have been recently proposed for high-frequency dynamics [23].

After the initial statement of the vibration conductivity was posed [13}15], in
which the thermal energy transmission was assumed rather than demonstrated, the
attention of researchers turned to a more strict derivation of the thermal analogy
[24}29].

Unfortunately, their analyses did not always reach the same conclusions. This is
in part comprehensible due to the complexity of the problem, which has led authors
to use di!erent simpli"ed assumptions. On the other hand, di!erent de"nitions of
the energy variable are employed in deriving the governing equations. Moreover,
little experimental work on the subject has been performed: the few experiments
performed, although interesting [30, 31], did not have the goal of con"rming or
rejecting the thermal analysis, but rather were aimed to apply the thermal analogy
to practical engineering problems.

The aim of the present work is to reconsider the thorny but fascinating problem
of the vibration conductivity in the light of the wavelength scale e!ect. The basic
idea is that the wave energy transmission is dominated by the ratio between
a characteristic length d of the system and the characteristic wavelength j generated
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by the excitation. More precisely, the non-dimensional value of the ratio k"d/j
seems to separate two di!erent energy rate conditions: the same and the large
k scale regions. The e!ects of k variations on the law of energy transmission is
systematically investigated for one- and two-dimensional continuous waveguides.
The main results concern the asymptotic analysis (kPR) of the power #ow. It will
be shown that the power #ow tends, for one-dimensional structures, to be
asymptotically thermal. Instead, the two-dimensional problem has two main power
#ow components: the "rst is analogous to the one-dimensional case but the second
has a completely di!erent nature, whose characteristics are investigated.
Experiments, performed using a laser technique, both on beams and plates, con"rm
the theoretical predictions, and the description and the interpretation of the results
are discussed in the "nal part of the paper.

2. ENERGY BALANCE EQUATION AND CONSTITUTIVE RELATIONSHIPS

The Poynting vector is de"ned as [29, 32]

I"rv

where r and v are the stress tensor and the velocity vector, respectively. It gives, by
its modulus and direction, the power #ow through a continuous medium and
permits one to write the local power balance in the form

div I#P
diss

"Le/Lt (1)

with P
diss

and Le/Lt being, respectively, the dissipated power and the time derivative
of the total energy (kinetic and potential).

The transmission potential function has been introduced in reference [26, 29].
Here the Poynting vector "eld is represented by the sum of an irrotational and

a solenoidal "eld using the Helmholtz}Clebsch decomposition,

I"gradt#rotW, (2)

where t and W are the scalar and the vector potential respectively. By combining
equation (2) and the power balance (1), one has

+ 2t#P
diss

"Le/Lt . (3)

Therefore, in the power balance only the scalar potential appears (namely,
the transmission potential), being the power #ow related only to the divergence
of the Poynting vector. Obtaining an energy equation requires giving explicit
expressions for t and P

diss
in terms of e. Therefore, the problem of providing

the energy constitutive relationships consists of the following steps: determin-
ation of the correlation t"t (e); and determination of the correlation
P

diss
"P

diss
(e).

To this end an appropriate energy de"nition must be established; the nature of
the energy equation depends on this choice. In the framework of the conductivity
principle, it is convenient to consider some energy average in time, frequency or
space, so that the energy equation could be simpler than the original equation of
motion, but still useful for the prediction of the structural response.
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When harmonic motion and time average are considered, the following
dissipation constitutive equation is de"nitely accepted [33]:

P
diss

"2guSeT , SeT"
1

2¹ P
T

~T

1
2

ou2wR 2dt.

Here g, u and ¹ are loss factor, the circular frequency and the period of oscillation
respectively. This is a good and simple approximation of the dissipated power. As
a consequence of this assumption the time derivatives of the energy in equations (1)
and (3) disappear.

For this case, the form of the function t(e) was investigated in reference [26] and
the fundamental results, for harmonic force, can be summarized as follows: the
potential of transmission depends on two di!erent terms of which only one (the
thermal contribution, t) is proportional to the local stored energy:
t"t

t
#t

d
"aSeN T#t

d
; the second term t

d
(deviation, d ) is not only dependent

on the energy: rather its expression is a complex function of the local displacement.
Moreover it is not negligible with respect to the "rst one.

The same result can be extended to the spectral-average energy for a random
excitation [26].

An important con"rmation of these results is found in reference [29], where the
general inconsistency of the thermal analogy has also been proved following
a di!erent mathematical approach.

The conductivity principle consists in admitting that the mechanical energy
along a structure, obeys the law

+ 2eJ!beJ"0,

where the tilde denotes some kind of average operation on the energy e, such as
frequency, time, space or ensemble average, according to di!erent authors
[13}15, 24, 27, 28].

Several theoretical considerations, numerical simulations and, "nally, some
experimental results [34], induce one to think that the space average is closely
related to the energy transmission. Therefore, in the present paper, besides
the time average, the space-average e!ects are also investigated. The idea,
formally developed in the rest of the paper, of studying the power #ow transmis-
sion in the structure through regions of characteristic "nite size d, arises. On
the basis of the previous results concerning the time-average energy, a close
relationship of t

d
to the total power transmission is expected if d/j is small. On

the other hand, if d/jA1, a di!erent energy rate condition would be approached.
Under this last hypothesis, an asymptotic analysis is developed and the
implications on the contribution of t

d
are discussed.

The following spatial moving-average de"nition is therefore assumed:

SeN (x, y, z)T"
1
d3 P

D

Se (x
1
, x

2
, x

3
)Tdx

1
dx

2
dx

3

D"Mx!d/2(x
1
(x#d/2, y!d/2(x

2
(y#d/2, z!d/2(x

3
(z#d/2N .
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Here x
1
, x

2
, x

3
are three auxiliary space co-ordinates employed to perform the

space average over D, while x, y, z are the space co-ordinates of the centroid of the
D region.

3. ASYMPTOTIC THERMAL EFFECTS IN ONE-DIMENSIONAL WAVEGUIDES

Consider a beam, with suitable restraints on the boundary, subjected to point
harmonic loads. The far"eld displacement solution for this vibrating beam is

wL (x, t)"w(x)e +ut"(a
~

e +kx#a
`

e~+kx)e+ut,

k"k
B
(1!jg/4)"4JoAu2/EI(1!jg/4),

k being the complex wavenumber, a
~

, a
`

the wave phasors and g, E, A, I, o, u
the loss factor, Young's modulus, cross-sectional area, moment of inertia,
mass density and the circular frequency of oscillation respectively. This expres-
sion completely represents the beam motion in each region far enough from
the boundary and the point forces. In fact, in this case, the near "eld can
be neglected and when the wave phasors are determined in a suitable way, the given
expression represents the general motion of the beam in each of the mentioned
regions.

The time-average energy is SeT"1
2
oAu2w*w, which, after some mathematics,

can be written as

SeT"
1
2

oAu2[ae~kB(g@2)x#bekB(g@2)x#c cos(2k
B
x#u)]

where a"Da
`

D2, b"Da
~

D2, c"2 Da
`

a*
~

D and u"L(a
`

a*
~

). The space-average
energy de"ned by

SeN (x)T"
1
d P

x`d@2

x~d@2

Se(x
1
)Tdx

1

provides, after several manipulations, the relationship

SeN T"i
eCA

enkg!1
nkgenk(g@2)B (ae~kB(g@2)x#bekB(g@2)x)#cA

sin(2nk)
2nk B cos(2k

B
x#u)D

"SeN T
t
#SeN T

d
, i

e
"

1
2

oAu2, (4)

where t and d indicate the thermal and the deviation component respectively and
k"d/j is introduced. This expression gives some important insights into the power
#ow transmission. In fact, one can immediately observe the double energy
contribution: the "rst,

SeN T
t
"i

eCA
enkg!1

nkgenk(g@2)B (ae~kB(g@2)x#bekB(g@2)x)D ,
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smooth, is governed by exponential terms and is thermal; on the contrary, the
second one SeN T

d
is harmonically oscillating. From this point of view, the situation

does not di!er much from that obtained using only the time-average energy
[25, 26]. The relevant di!erence is here related to the presence of the k dependent
factors in the energy expression. Those terms control, through k, the relative
amplitudes of the two energy contributions and their asymptotic properties (as
kPR or kP0) reveal two di!erent energy rate regions: the small and the large
k scales.

When the local energy value is accounted for, corresponding to dP0, no space
average is performed. In this case, kP0 and from equation (4) it is apparent
that both the factors involving k in the energy expression tend to 1. Therefore,
the thermal and non-thermal components are of the same order of magnitude.
On the contrary, the opposite asymptotic limit, kPR, de"nitely increases
the amplitude of the thermal components, while the non-thermal one tends to
vanish. Moreover, if k"n/2 (for an integer n), the amplitude of the non-thermal
component is zero.

It can be concluded that the thermal conductivity has an asymptotic validity in
the sense previously de"ned: i.e., limk?=

SeN T"SeN T="SeN T
t
.

To point out this wavelength scale e!ect better, it is interesting to estimate the
thermal and non-thermal transmission potentials. The local energy balance gives
tA!2guSeT"0.

Substituting the obtained space-average energy expression (4) in it, and
integrating twice with respect to x, one has for the potential,

t"2gk P PSeN T dxdx#c
1
x#c

2
Nt"

8u
k2
B
g

SeN T
t
!

gu
2k2

B

SeN T
d
"t

t
#t

d
,

where the two constants in the potential expression can be sent to zero [26]. It is
easy to verify the two properties:

t
d
(x,k)"0 G

kPR.
k"n/2,

(asymptotic property)
n"1, 2, 3,2 H .

This result has an important physical meaning: the deviation of the potential of
transmission with respect to the thermal term becomes negligible if the
space-average energy is computed over a domain whose characteristic size d is
signi"cantly greater than the wavelength j. Moreover, when d equals a multiple of
j/2, the potential t is still totally thermal. Therefore, it can be concluded that, for
the beam, the time- and space-average asymptotic energy SeN T= satis"es the
conductivity vibration principle.

4. ASYMPTOTIC BOUNDS IN TWO-DIMENSIONAL WAVEGUIDES
NON-THERMAL ENERGY COMPONENT

The plate energy distribution follows a di!erent governing law. The beam is
a one-dimensional waveguide: the waves can travel only along a "xed direction. If
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point harmonic loads are accounted for and the near "eld is neglected, one can
represent the plate vibration solution by superposition of an in"nite number of
plane waves travelling in any possible direction. In other words, the displacement
phasor w can be expressed as an integral in the form:

w (r)"P
n

0

a
`
(h)e~+k(h)r#a

~
(h)e +k(h)r dh ,

where k (h)"k
B
(1!jg/4)n(h) is the complex wave vector, n(h) the unit vector

associated with the h direction of propagation and r,Mx, yN the position vector.
This is representative of the plate motion in every region far enough from the
boundary and the point loads. The expression obtained is useful for a direct
comparison between the beam and plate energy distributions. In fact, by starting
from this formulation it is possible to proceed in the same way as shown in section
3. The time-average energy density per unit area associated with the displacement
"eld is

SeT"i
T P

n

0
P

n

0

(a
`

(h
1
)e~+k(h1)r#a

~
(h

1
)e+k(h1)r)

](a*
`
(h

2
)e+k*(h2)r#a*

~
(h

2
)e~+k*(h2)r ) dh

1
dh

2
, i

T
"1

2
ou2h .

Developing the integrand expression, one obtains the time-average energy as

SeT"i
T

4
+
i/1
P

n

0
P

n

0

A
i
(h

1
, h

2
)em

i (h1, h2) r dh
1
dh

2

where A
1
"a

`
(h

1
)a*

`
(h

2
), A

2
"a

`
(h

1
)a*

~
(h

2
), A

3
"a

~
(h

1
)a*

`
(h

2
) and A

4
"

a
~
(h

1
)a*

~
(h

2
) are the wave energy coe$cients and

m
1
"j Dk*(h

2
)!k (h

1
) D , m

2
"!j Dk*(h

2
)#k(h

1
) D ,

m
3
"j Dk*(h

2
)#k (h

1
) D , m

4
"j Dk*(h

2
)!k (h

1
) D .

According with the de"nition given in section 2, the space average over the
D domain is therefore

SeN T"i
T

4
+
i/1
P

n

0
P

n

0

A
i
(h

1
, h

2
)

d2 C P
D

em
i
q dSDdh

1
dh

2

"i
T

4
+
i/1
P

n

0
P

n

0

A
i
(h

1
, h

2
)EM

i
(r, h

1
, h

2
)

d2
dh

1
dh

2
,

where q"Mx
1
, x

2
N (spatial co-ordinates). The inner integral is evaluated in the

following manner:

EM
i
(r, h

1
, h

2
)"P

x`d@2

x~d@2
P

y`d@2

y~d@2

em
i
q dx

1
dx

2
"

em
i
r

l
ix
l
iy

)
el

ix d!1
elix d@2

)
eliyd!1
eliy d@2

.
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4.1. ENERGY FIELD DECOMPOSITION

In the previous expression of the energy "eld, two main contributions can be
separated. In fact, it is easy to show that the following decomposition holds:

SeN T"i
T

4
+
i/1
P

n

0
P

n

0

A
i
(h

1
, h

2
)EM

i
(r, h

1
, h

2
)

d2
[1!d (h

1
!h

2
)] dh

1
dh

2

#i
T

4
+
i/1

P
n

0

A
i
(h, h)EM

i
(r, h, h)

d2
dh,

SeN T"SeN T
iwe

#SeN T
cwe

.

Here, d is Dirac's generalized function and the two energy components are called
interference wave energy (iwe) and coincident wave energy (cwe) respectively. The
"rst is related to incident waves propagating along di!erent directions, while the
second is due to waves propagating in the same given direction. The properties of
both are investigated separately in the following two sections.

4.1.1. Coincident wave energy

The explicit form of the cwe is recovered by introducing the expression for
m
i
(h

1
, h

2
), given previously, when h

1
"h

2
"h. One then has m

1
"!k

B
(g/2)n,

m
2
"!2jk

B
n, m

4
"k

B
(g/2)n and m

3
"2jk

B
n, where n"Mcos h, sin hN. Substituting

in the cwe expression one obtains, after some mathematics,

SeN T
cwe,t

"i
T P

n

0
A

(enkg 4*/ h!1)(enkg #04 h!1)
(nkg)2 sin 2h enk(g@2)(4*/ h`#04 h)B ) (A1

e~kB(g@2)nr
#A

4
ekB(g@2)nr ) dh,

SeN T
cwe,d

"i
T P

n

0
A
sin(2nk cos h) sin(2nk sin h)

(nk)2 sin 2h B DA
2
D cos(2k

B
nr!u),

SeN T
cwe

"SeN T
cwe, t

#SeN T
cwe,d

,

Here u"LA
2
. The analogy between this part of the plate energy and the beam

energy is complete. In fact, the "rst term is thermal and satis"es the conductivity
law. On the contrary, the second one is non-thermal but has the same asymptotic
properties discussed in section 3 about the beam energy. Therefore, the SeN T

cwe
provide a substantial thermal energy contribution. Proceeding in the same manner
as in section 3, when high k values are considered (i.e., SeN T

cwe,d
vanishes), the

asymptotic cwe energy obeys the thermal law, i.e., + 2SeN T=
cwe

!(gu/c
g
)2SeN T=

cwe
"0,

where c
g

is the group velocity of #exural waves. The asymptotic transmission
potential is therefore t=

cwe
"(2u/c

g
k
B
)2SeN T=

cwe
.

It is important to notice that the possibility of spliting the cwe energy into two
independent components is related to the form of the m

i
vectors. They are two real

(i"1, 4) and two purely imaginary (i"2, 3) component. Consequently two
exponentially decaying and two harmonically oscillating (but asymptotically
vanishing) solutions are found.
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4.1.2. Interference wave energy

One can now examine the part of the energy related to the waves' interference.
It is convenient to introduce the notations EM

i
(r, h

1
, h

2
)/d2"F

i
(h

1
, h

2
)em

i
r,

m
i
(h

1
, h

2
)"k

B
z
i
(h

1
, h

2
), where

z
1
"!(g/4)(n(h

1
)#n (h

2
))!j (n(h

1
)!n(h

2
) ) ,

z
2
"(g/4)(n(h

2
)!n (h

1
) )!j(n(h

1
)!n (h

2
)) ,

z
3
"!z

2
, z

4
"!z

1
.

The expression for SeN T
iwe

is then

SeN T
iwe

"i
T

4
+
i/1
P

n

0
P

n

0

MA
i
(h

1
, h

2
)F

i
(h

1
, h

2
)em

i
r[1!d(h

1
!h

2
)]Ndh

1
dh

2
.

The m
i
, z

i
vectors are generally complex and, thus, the integrand contains both

evanescent and harmonic coupled factors. After mathematical manipulations, the
following expression is obtained:

SeN T
iwe

"i
T

4
+
i/1
P

n

0
P

n

0

MA
i
(h

1
, h

2
)(FR

i
(k, h

1
, h

2
) cos(mI

i
r)

!FI
i
(k, h

1
, h

2
)sin (mI

i
r) )emR

i
r[1!d(h

1
!h

2
)]Ndh

1
dh

2
.

Here the symbols R and I indicate real and imaginary parts respectively, and the
dependence on k is explicitly indicated. This energy does not satisfy the thermal
equation, as can be proved by direct substitution. Therefore, it is worthwhile to
analyze the trend of the function F

i
versus k to evaluate the asymptotic e!ect of the

interference components. The explicit form of F
i
is

F
i
(k, h

1
, h

2
)"

(e2nkzRixe2n+kzIix!1) (e2nkzRiye2n+kzIiy!1)

(2nk)2z
ix

z
iy
enkzRixenkzRiyen+kzIixen+kzIiy

.

The exponents a!ecting the asymptotic trend of this function are only the real
ones. Therefore, the asymptotic analysis of F

i
involves the general function

e2ak/keak, with the asymptotic property

lim
k?=

e2ak
keak

"G
0
R

if a(0,
if a'0.

Since a is the real or imaginary part of the generic z
i
vector, when h

1
, h

2
vary in

the integration region H,[0; n]][0; n] a belongs to the interval
!g/2(a(g/2. Therefore, in the part of H in which a(0, F

i
tends to zero when

k increases, but in the remaining part of H it tends to in"nity. Looking at the
z
i
vector expressions, one is easily convinced that for each region R

~
-H over

which a(0 there exists a corresponding R
`
-H, of equal area, over which a'0.

Consequently, the integrand of the interference wave energy has globally the same
exponential increasing trend as the contributions in the integral of the coincident
wave energy. Thus, a non-thermal component de"nitely exists, even when the



Figure 1. Comparison between non-thermal energy (---) and thermal energy (*), versus the scale
range parameter k.
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asymptotics we considered. It should also be noticed that the combined e!ect of an
increasing and a decreasing component of iwe can determine a relative minimum in
its contribution to the total energy (see the later Figure 1).

Therefore, SeN T
iwe

is generally not negligible with respect to SeN T
cwe

. The complete
energy "eld consists of the thermal (t) and deviation (d ) components of cwe and of
the iwe contribution: i.e.,

SeN T"SeN T
cwe, t

#SeN T
cwe,d

#SeN T
iwe

with the asymptotic property

lim SeN T
k?=

"SeN T=
cwe

#SeN T=
iwe

,

where SeN T=
iwe

does not satisfy the thermal law. In addition, it is important to point
out that neither SeN T

cwe,d
nor SeN T

iwe
has any zero value in correspondence to

multiples of the wavelength, as in the one-dimensional case.
One is easily convinced that a parallel analysis, leading to analogous results, can

be developed for three-dimensional structures.
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4.2. SOME REMARKS ABOUT THE WAVE ENERGY COEFFICIENTS

Before concluding this part of the analysis, further considerations about the
energy coe$cients A

i
(h

1
, h

2
) must be added. It is di$cult to make any general

prediction about their form, since they are very sensitive to the plate geometry and
to the force location. However, two opposite extreme conditions can be analyzed as
follows.

In recent paper [25], an average of them is proposed (spatial, ensemble, etc.) by
introducing an expected value operator E. Even if the present paper is mainly
devoted to the moving-space average, introduced by k, the question deserves
particular attention especially in evaluating the damping e!ects. The accepted
hypothesis in reference [25] is substantially, E[A

i
(h

1
, h

2
)]"A

i
d(h

1
!h

2
). The

main consequence of this assumption is that only the coherent energy terms
(h

1
"h

2
) are preserved by the action of the E operator and they constructively take

part only in the total energy "eld. This condition is called here statistical directional
independence (sdi).

In the frame of the present analysis this means that the energy amplitude
coe$cients of the interference wave energy produce, on average, a zero contribution,
or a negligible contribution with respect to the coincident wave energy coe$cients.
Therefore, the thermal component would be prevalent with respect to the
non-thermal one.

However this assumption, as shown in reference [25], is incorrect in
axisymmetric problems. It is important to point out that in these cases the energy
distribution does not depend at all on the propagation angle h, and this is in
apparent contradiction with the sdi assumption. In fact, important corrections to
the thermal analogy are proposed in reference [25] for analysis of this kind of
problem.

In the present paper, point loads on the structure are being analyzed. The action
of the force generates circular waves propagating from the force location towards
the boundaries of the structure. When these circular train waves (direct "eld) reach
the boundaries, the re#ections generate a reverberant "eld. Thus, when dealing with
point forces, the direct "eld is always axi-symmetric which violates the sdi
hypothesis. This happens irrespectively of the nature of the point force, be it
harmonic or random. Moreover, as discussed in the next section, this e!ect is
ampli"ed when high damping is involved.

Therefore, when approaching axisymmetric propagation, the energy coe$cients
rather obey the isotropic condition (ic) E[A

i
(h

1
, h

2
)]"A

i
. However, even for low

damping and even admitting that the reverberant "eld could obey the sdi
hypothesis, the direct "eld, in the point load case, is always axisymmetric and obeys
the isotropic condition. Thus, at least for the point force case (harmonic and
random in time), the sdi hypothesis fails.

The energy behaviour when the ic hypothesis is accepted is now analyzed.
Assume, for the sake of simplicity, the ic in the form A

i
"1. In this case, both the

energy components SeN T
iwe

and SeN T
cwe

can be numerically evaluated using the
general formulas found in the previous two sections. Their trend versus k is plotted
in Figure 1. The importance of the non-thermal energy contribution and even its



Figure 2. Thermal/non-thermal energy ratio versus k: di!erent behaviour between (*) beam and
plate (---).
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strong prevalence over the thermal one are appearent. Moreover, the previously
quoted SeN T

iwe
minimum appears.

In Figure 2, a comparison between the beam and the plate energy is shown. More
precisely, the thermal to non-thermal energy ratio is plotted versus k, when for the
plate the ic hypothesis is used, con"rming the di!erence between the one- and
two-dimensional laws of energy distribution.

These results are rather interesting. In fact, one can suppose that the form of the
wave energy coe$cients A

i
(h

1
, h

2
) generally has behaviour intermediate between

the two sdi and ic cases. As a consequence, the non-thermal energy contribution
generally belongs, with reference to Figure 1, to the region bounded by the k-axis
(zero iwe contribution accordingly with the sdi hypothesis) and the dashed curve (ic
hypothesis).

5. ON THE ROLE OF DAMPING IN THE THERMAL ANALOGY

In the previous section, the importance of k has been discussed for one- and
two-dimensional systems.



THERMAL ANALOGY IN WAVE ENERGY TRANSFER 265
The damping e!ects on the mechanism of wave energy propagation now deserves
particular attention. In fact, dissipation phenomena imply very di!erent e!ects
when considering one- or two-dimensional systems. Moreover, their role is crucial
for the validity of the thermal conductivity approach.

5.1. ONE-DIMENSIONAL SYSTEMS

If in the thermal balance the dissipation is not considered, i.e., the loss
factor is zero, the balance equation collapses into a Laplace equation. In this
case, when adiabatic boundary conditions are imposed, the problem encounters
serious di$culties. In fact, the input power must be zero because the total dis-
sipated energy is zero (global power balance of the structure) and, consequently,
the forcing term in the thermal equation is also zero. For a one-dimensional
system

SeN TA"0 along the guide, SeN T@"0 on the boundaries

so that one has

SeN T"ax#b, SeN T@ Dt
0
"0 NSeN T"b.

Therefore, a constant value of the average energy level on the beam is found.
In addition, its value is unknown because no physical information provides
it. Moreover, this solution is wrong, at least for harmonic point load. In fact, for
the undamped beam, subject to a point force, sudden jumps in the average
energy appear [35]. Similar conclusions hold when a small damping factor g is
considered. In this case, the average energy level is recovered trivially by the power
balance

2gu P
D

SeTdx"P
in
P2gu¸ G

1
¸ P

L

0

SeT dxH"P
in
PSeT+

P
in

2gu¸

,

where ¸ is the beam length and P
in

the injected power. This equation provides,
more simply, the same solution as obtained by the thermal conductivity approach,
requiring the same a priori information, i.e., P

in
.

On the other hand, if a heavy damping e!ect is considered, the thermal analogy is
asymptotically successful (in the sense speci"ed in section 5.1). In fact, in the energy
expression (4) the non-thermal component is independent of g, but the thermal one
depends on it by the factor (enkg!1)/nkgenkg@2. The ratio between the thermal and
non-thermal energy amplitudes when g increases is

lim
g?=

enkg!1
nkgenkg@2

"enkg .

It can be concluded that larger the g, greater the thermal energy component with
respect to the non-thermal one. In this case, even for a point load harmonic force,
the jump e!ect at the force location tends to disappear [35] and the energy trend
prediction is accurate.
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5.2. TWO-DIMENSIONAL SYSTEMS

In this case, when the damping factor approaches zero, again some di$culties
arise. In fact, one has

+ 2SeN T"0 along the structure, LSeN T/Ln"0 on the boundary.

A simple property of elliptic di!erential equations [36] states that if the harmonic
function SeN T has normal derivatives vanishing on the boundary LD, then the
function is constant on D. Thus, when a lightly damped structure is considered in
the frame of the thermal analogy, an almost constant energy distribution is
expected. Its average (representative of the energy distribution) is simply obtained
by

2gu P
D

SeN TdS"P
in
P2guS G

1
S P

D

SeN TdSH"P
in
PSeN T+

P
in

2guS
.

Therefore, even in the two-dimensional case, for small g, the thermal conductivity
is of little practical importance.

The analysis of heavily damped structures is more complicated. In the previous
section, the energy "eld decomposition SeN T"SeN T

cwe, t
#SeN T

cwe,d
#SeN T

iwe
was

suggested. The "rst two terms are the one-dimensional-like energy components.
Therefore, when the damping factor increases, the SeN T

cwe, t
/SeN T

cwe,d
ratio de"nitely

increases, approaching a thermal behaviour (section 5.1)
A second e!ect is related to the expression of F

i
given in section 4.1.2. One is

easily convinced that when g is increased, in the asymptotic limit kPR, F
i
and

thus iwe, is also increased. Therefore, under this respect, an increasing of g leads to
increase iwe.

A third opposite e!ect is instead observed for the interference energy component.
In fact, when heavy damping is considered, the energy direct "eld rapidly decreases
from the power injection point. Then the amount of energy that reaches the
boundary to initiate the reverberant "eld is small compared with that of the direct
"eld, thus eluding the sdi assumption. In such a case, an axisymmetric distribution
is approached and the thermal analogy fails.

However, the two "rst opposite e!ects examined do not tend to a compensation.
When assuming the ic hypothesis, the thermal to non-thermal energy ratio is
plotted versus k for di!erent values of the damping factor in Figure 3. The
increasing importance of the non-thermal component as the damping factor
increases is apparent.

From the previous considerations the following conclusions about the
dissipation e!ect on the energy transmission mechanism, can be drawn.

For a low damping factor: (i) the thermal analogy predicts an almost constant
energy distribution, and in this case its utility is doubtful because the energy level is
substantially proportional to the input power and immediately computed; (ii) in
general, when a point harmonic force is considered, the constant energy level
prediction is incorrect; in fact in corresponding to the force location, a sudden jump
in the energy level appears (in both one- and two-dimensional systems).

For a high damping factor: (i) for one-dimensional systems, a high dissipation
leads fast to an asymptotic thermal transmission (as speci"ed in section 3); the



Figure 3. Thermal/non-thermal energy ratio versus k, when varying the damping factor g.
g onlines: ** , 0)001; }}} , 0)01, } ) } )} , 0)05, ) ) ) ) ) ) , 0.1.
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sudden energy jump at the force location tends to disappear and the thermal
prediction is correct; (iii) for two-dimensional systems the dissipation e!ect acts an
opposite manner on the two main energy components: g speeds up the
one-dimensional-like energy contribution (SeN T

cwe, t
#SeN T

cwe,d
) convergence

towards the asymptotic thermal distribution (when k is large enough); on the
contrary, the non-thermal interference component increases its importance with
respect to the thermal one.

6. EXPERIMENTAL VALIDATION OF THE THEORY

In the "rst part of this paper, the basic principle of thermal propagation of
mechanical energy has been examined from a theoretical point of view. The results
suggest that the analogy between thermal and mechanical energy propagation
would be an acceptable approximation only for one-dimensional systems, but is no
longer valid in general for two- and three-dimensional structures.

An experimental validation of the theoretical predictions is now presented.
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The experimental tests were performed on a beam and a plate, excited in
a relatively high-frequency range. Consequently, short characteristic wavelengths
are generated and a very "ne measurement grid is required. A measurement
technique, based on a scanner laser vibrometer is, in this case, the most e!ective
way to investigate the phenomenon. The comparison between theory and
experimental results con"rms the dependence of the energy transmission law on the
wavelength scale e!ect and outlines a di!erent energy rate law for beams and plates.

Although conceptually not di$cult, the experimental analysis requires some
preliminary discussion about two main points.

The "rst is related to the variations of k needed to investigate the asymptotic
properties of the power #ow. In fact, a systematic set of tests must be performed at
di!erent values of k.

Since k is de"ned as k"d/j"dk
B
/2n"du/2nc

B
, it is evident that the variations

of k can be obtained in two totally di!erent ways: acting on the circular frequency
or on the cell size d.

In this way, doubt that the e!ects produced on the energy transmission
mechanism can be di!erent arises. This, in fact, is what was observed in several
computer simulations used to design the experimental work. However, it must now
be noticed that the theoretical analysis implicitly assumes that one varies d and not
j. In fact, in the space-average energy expression [e.g., equation (4), or plate energy
expressions given in section 4] both k and k

B
"2n/j appear. But the asymptotic

analysis accounts only for k variations, while k
B

(i.e., j) has been assumed to be
constant. Therefore, experimental and theoretical results must be compared under
the same hypothesis: i.e., by varying k acting only on d. However, a suitable
dimensional analysis, developed in section 6.1, helps in a further understanding of
the problem.

The second concerns the experimental analysis of the thermal and non-thermal
energy components that cannot be individually measured. Therefore, an indirect
evaluation of them is required. In section 6.2, a simple approach to this problem is
proposed. The idea consists in measuring the total energy "eld along the structure.
Then, by using the thermal assumption, the power balance of each subregion can be
written in thermal form but since the total energy does not generally obey this law,
an equation error arises and it is assumed as a measure of the deviation component
of the energy #ow with respect to the power rate predicted by the thermal
hypothesis.

6.1. DIMENSIONAL ANALYSIS OF THE POWER EXCHANGE

Consider a partition of the structure into elements of characteristic size d. The
relevant physical properties of each cell are related to E, o, g and l (Poisson's ratio);
the cell geometry is then completely described by its thickness h and its
characteristic size d. The information about the time evolution of the physical
quantities is given by the circular frequency u.

E, o, g, l, h, d, u can be assumed as the seven physical relevant quantities
governing the energy exchange between two contiguous cells.
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The following relationships hold:

j"2n/ 4Johu2/D, D"Eh3/12(1!l2) , c
L
"JE/o ,

and it is convenient to replace h, l, E by j, D, c
L

respectively. Since
mechanical energy propagation is considered, the fundamental physical quantities
to account for are: length (¸), mass (M) and time (¹ ). The Buckingham P theorem
states that the number of basic non-dimensional groups is given by the di!erence
between the number of independent characteristic quantities (seven) and the
fundamental ones (three): i.e., four non-dimensional groups can be recovered
(P

1
, P

2
, P

3
,P

4
). Consider, for example, the power #ow: it must depend on four

non-dimensional groups. Their form is easily determined by the Buckingham
method:

P"P
1
P

2
P

3
P

4
"dajbcc

L
odgeDfum,

P being a non-dimensional quantity. By introducing explicitly ¸, M, ¹ into the
previous expression and solving the dimensional equation in terms of the unknown
exponents, one obtain

P"A
d
jB

a
A

c
L

ujB
c
A

D
u2j5oB

f
ge .

These are the four characteristic non-dimensional groups su$cient to describe
the energy transmission between the subsystems in which the structure is
partitioned. It must be noticed that the "rst is just the k parameter: it depends only
on the cell size d. The physical consequence is remarkable. When interested in
studying the dependence of the energy transmission on the k parameter, one must
act on the cell size d only. If the wavelength j is modi"ed, acting on the frequency,
then three non-dimensional groups are modi"ed. These considerations suggest
performing set of experimental measurements at constant frequency by varying the
cell size over which the energy average is computed.

The damping factor has also, as expected, an important role in the energy
transfer. The implications for the thermal analogy of the dissipation e!ect has been
analyzed previously in this paper.

Here attention is mainly addressed to the k factor because it involves d, i.e., it is
directly related to the de"nition of the moving-average energy introduced in the
"rst part of the paper. In other words, once the wavelength is given, one is able to
modify k without involving any modi"cation (geometrical or in the physical
parameters) in the system analyzed.

6.2. INDIRECT MEASURE OF THE NON-THERMAL FLOW

In section 4, the analysis of the power #ow was carried out by introducing the
energy components of the whole energy "eld. The asymptotic behaviour of each
component was discussed and their properties described. This way of analyzing the
energy constitutive relationships is suitable when approaching the problem
theoretically. On the contrary, when dealing with experimental tests, it is possible



270 A. CARCATERRA AND L. ADAMO
only to measure the whole energy "eld and no direct information on single
energy components is available. The solution of this problem relies on an in-
direct inspection of these contributions by measuring some of their observable
e!ects. Here the calculation of the non-thermal energy #ow is proposed,
through the indirect estimate of the equation error as described in what
follows.

First consider the kinetic energy related to the beam motion. The theoretical
considerations developed in section 3 allow one to state that only the SeN T

t
energy

component is thermal, i.e., satis"es the governing equation

8u
k2
B
g
SeN TA

t
!2guSeN T

t
"0.

Therefore, the complete energy "eld SeN T generally does not obey the heat law
and when substituting SeN T in the thermal equation, a local #ow error e

x
is

introduced:

(8u/k2
B
g)SeN TA!2guSeN T"e

x
. (5)

Making use of the energy expression (4), one has (if g;1)

e
x
(x,k)+8k2

B
i
e
guc

sin 2nk
2nk

cos(2k
B
x#u) . (6)

A global #ow error can be also introduced by integrating e2
x

over the beam's
length, i.e.,

e(k)"S
1
l P

l

0

e2
x
(x,k) dx+4J2k2

B
i
e
guc

sin 2nk
2nk

.

It is apparent that the equation error tends to zero as k increases and is zero
when k"n/2, with an integer n. These results are exactly the same obtained in
section 3, although expressed in an alternative form, more convenient in an
experimental validation of the theory. Therefore, e can be used as a check
parameter of the power #ow deviation, with respect to that predicted by the
thermal assumption.

The #ow error and related asymptotics can be also introduced in a slightly
di!erent manner. Consider the beam, decomposed into N segments of length d, as
a set of physical subsystems connected in series. The time-average energy, per unit
length, stored in the ith system is EM

i
"SeN (x

i
)T, where x

i
is the centre of the segment

considered and SeN (x
i
)T is given by equation (4).

When a proportional energy transmission law is assumed, the power #ow U, the
dissipated power P

diss
, related to the ith segment and the transmitted power %

tr, i
,

between the ith and the (i#1)-th segments, are, respectively,
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Thus, the power balance of the ith segment is

U
i
!P

diss, i
"e

i
, f

(EM
i`1

!2EM
i
#EM

i`1
)

d2
!2guEM

i
"e

i
, (7)

where f is a proportionality constant, whose value can be determined using the
procedure shown in the next section. Equation (7) represents, in some way, the "nite
counterpart of equation (5) and is suitable for the experimental measure of the #ow
error. An explicit expression of the #ow error can be found in Appendix A.
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showing that the asymptotic properties of e
i

are qualitatively similar to those
discussed in equation (6). A dimensionless global error can also be de"ned as

e"J(1/N) +N
i/1

e2
i
/(+N

i/1
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diss, i
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i/1
e2
i
/P
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.

The previous remarks about the power #ow error indicate that e is a measure of the
total amount of non-thermal power #ow, i.e., it is the normalized power #ow
transmitted by the non-thermal energy component, and that the analysis of the
trend of e versus k allowing to investigate the asymptotic properties of the
non-thermal energy, as shown by equation (6), so the theory can be validated
investigating the function e(k).

Moreover, the theoretical power analysis developed in the previous part of the
paper, applies in two di!erent ways. In fact, it is possible to check if the energy
variable SeN (x)T, considered a moving-space average, satis"es the thermal
di!erential equation (4). On the other hand, EM

i
"SeN (x

i
)T provides the energy stored

in a region of centre x
i
and characteristic size d. Therefore, it is meaningful to study

whether the energy exchange between bordering regions, considered as individual
physical subsystems, follows or not the proportional thermal energy propagation,
leading to the di!erence equation (7). The two di!erent points of view lead,
however, to rather similar conclusion about the asymptotic trend of the
non-thermal #ow, as is clearly shown by comparing equation (6) with equation (8).

With these considerations in mind, a detailed analysis of the power #ow error is
developed in the following as an indicator of the tendency of the energy to violate
the thermal law.

A detailed analysis of the #ow error criterion for the plate test case is as follows.
By laser measurements, the velocity phasor=

i,j
, in each point P

i,j
of the grid is

available. Therefore, once the energy density distribution over the grid is
determined as SeT

i, j
"i

T
=*

i,j
=

i, j
, the structure is divided into rectangular

regions of characteristic sizes d
x
d
y
. This operation generates a grid on the structure.

Each cell of the grid is indicated by C
r, s

. The energy average can be computed for
each cell in the form
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At a "xed frequency u a corresponding wavelength j exists. Therefore, for each
decomposition of characteristic sizes d

x
, d

y
(almost equal in the experimental case),

a corresponding value of the k parameter is determined, for example, as
k"d/j"Jd

x
d
y
/j . By varying the characteristic dimension of the cells, at a "xed

frequency (see section 7.1), the desired k parameter variations are obtained and,
correspondingly, several distributions of the related average energy SeN (k)T

r,s
are

computed using equation (9).
The transmitted thermal powers, along x and y, are
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and therefore the thermal power balance of the rth, sth cell C
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leads to
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By developing the power #ow expression it follows that
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This is the error a!ecting, cell by cell, the thermal hypothesis and is the
two-dimensional counterpart of equation (7).

The global #ow error e(k) can be de"ned as

e(k)"
J+

r,s
e2(k)

r,s
P

diss
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"2gu +
r,s

SeN (k)T
r,s

.

The value of the proportionality coe$cient f, contained in equation (10), can be
determined by imposing that the global #ow error over the whole structure be
minimum, i.e., Le(k)/Lf"0. A least-squares procedure leads to the following
optimal value for f :

f
opt
"

+
r, s

D2(k)
r,s

SeN (k)T
r, s

+
r, s

D2(k)
r,s

This experimental value has been compared with the theoretical one given in
reference [15] and a quite good agreement is found. This is, however, the value
providing the best "t of energetic experimental data by the vibration conductivity
hypothesis, being the equation error minimum.

In the following section, a description of the test structures and of the whole
measurement chain, for the beam and the plate, is given.
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7. EXPERIMENTAL SET-UP AND RESULTS

This section describes the experimental set-up and the measurement chain used
in the beam and the plate tests.

In the post-processing of the experimental data, the cells corresponding to
the input power point, and to the points of attachment of the test structure,
were eliminated from calculations. In fact, a correct local balance equation,
in correspondence to these points, requires the knowledge of both the input
power and the power leaving the system through the boundaries. Especially
the evaluation of this last quantity is di$cult, not simply it being measurable.
Thus, the evaluation of the #ow error, expressed by equation (8) or equation
(10), was limited to those cells (total number equal to 140) not belonging
to the boundary and in which power was not injected by the excitation
force.

The "rst set of experiments was performed on a hinging aluminium beam of
length 1)4 m.

A damping layer was applied on the beam surface. Good theoretical reasons
suggest avoiding very lightly damped systems. In fact, in such cases, the thermal law
of propagation loses its advantages, providing an almost constant energy
distribution as shown in section 5. Moreover, the damping layer introduces
an important increment to the mass per unit length, but the #exural beam sti!-
ness is not substantially modi"ed. Therefore, the phase speed of waves decreases
and, consequently, a shorter wavelength is obtained at the same excitation
frequency.

The relationship between the characteristic wavelength and the circular
frequency can be theoretically predicted as

j"2nS
E

12(o
in
#o

dl
)

Jh

Ju
, (11)

where o
in

and o
dl

are the mass density of the metal part of the beam and the
equivalent mass per unit volume due to the damping layer (o

dl
"600 kg/m3)

respectively.
The maximum value for k can be estimated by k

.!9
"(¸/N

.*/
)/j, where N

.*/
and

j
.*/

are the smallest values of the measurement stations and of the wavelength that
can be used in the experimental set-up. Since N

.*/
"5}6, otherwise the discussed

#ow error procedure becomes meaningless and j
.*/

"7 cm, so with the maximum
corresponding frequency 10 kHz, one has k

.!9
:(140/6)/7:3 and the

corresponding experimental k range is 0(k(3.
In this way, the SeT

i
values can be used, as described in the previous section, to

obtain the error e(k).
The last point concerns the evaluation of the actual k value. Theoretically, the

wavelength could be determined by relationship (11). In practice, due to the
uncertainties in the parameters involved, equation (11) can provide only, a rough
estimation of the characteristic wavelength. Since some relevant e!ects when for
e.g., d"jn/4, i.e., k"n/4, must be observed, a correct evaluation of the wavelength
value in experimental conditions is important.



Figure 4. Beam test: equation error versus k for harmonic excitation. Frequency 8000 Hz.
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Starting from the measured space energy distribution SeT
i
, the discrete Fourier

transform (DFT) of this sequence is computed as (limited to 128 points only)
SE(k

j
)T"DF¹MSe(x

i
)TN . This represents the energy distribution in the wave

number domain. The location of the peak in the SET
j

sequence provides the
dominant wave number k

r
:

k
r
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r
)T,maxMSE (k
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)TN .

Since some dispersion of the energy signal around the dominant wave number is
expected, a weighted average of the k's is determined as

k6 "
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k
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+n
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SET
r`l

"

2n
j1

where n"1}2. The previous equation provides the desired wavelength value to
compute the corresponding k.

In Figures 4 and 5 the error trend, as de"ned in sections 3 and 4, is plotted versus
k, at the frequency 8 kHz, and for random vibrations with a #at excitation spectrum
in the range 8}10 kHz respectively.

The asymptotic limit of the error as k increases is apparent. Moreover, the
sudden decrements corresponding to the critical values k"0)5, 1, 1)5, 2, 3 are also
clear.

The agreement with the theory explained in the previous part of the paper seems
to be very good.



Figure 5. Beam test: equation error versus k for random excitation. Frequency band 8000}10000 Hz.
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The experimental set-up for the plate (size 0)6]0)8 m2) test was analogous to
that described for the beam. In this test case, the main problem did not concern the
maximum frequency limit but, rather, the maximum number of measurement
points.

Several practical considerations suggested using a maximum frequency of 4 kHz,
with a point force applied to the plate at x"0)5, y"0)5. The minimum
wavelength, determined using the DFT procedure previously discussed for the
beam, was estimated to be about 4 cm. The corresponding maximum number of
points in the measurement rectangular grid was 128]64"8192.

In Figure 6, the measured energy distribution for harmonic excitation at 4 kHz is
represented by its three-dimensional graph; in Figure 7 the same representation for
a random excitation in the range 3)5}4)5 kHz is shown. The energy levels are
computed from the velocity laser measurements and some spurious peaks are
observed, especially near the boundaries. However, they are successively eliminated
and the measurement at these points is systematically repeated.

In Figures 8 and 9 the contour levels provided by the scanner laser system are
plotted for the two previously mentioned cases, and the propagating wavefront is
clearly identi"ed. In Figures 10 and 11, the energy pro"le sections (along the longer
plate side), passing through the excitation point, are shown. In the abscissa the
number of the measure station along the side is represented.

The procedure described in section 7.2 was applied to produce the error
parameter for the previous two test cases and the results are shown in Figures 12



Figure 6. Plate test: energy "eld distribution provided by the laser head for harmonic excitation at
4000 Hz.

Figure 7. Plate test: energy "eld distribution provided by the laser head for random excitation in
band 3500}4500 Hz.
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and 13 respectively. Here the error equation, i.e., the power #ow error, is plotted
versus the k parameter. It is clear how the power error is still very high even in the
high k range, especially for the random excitation, in accordance with the
considerations presented in this paper.

The trend of the e(k) curves shows a behaviour of the plate energy di!erent from
that of the beam. In fact, the asymptotic limit is reached very rapidly in the beam



Figure 8. Plate test: computer image elaboration of the energy "eld over the plate surface,
harmonic excitation at 4000 Hz.

Figure 9. Plate test: computer image elaboration of the energy "eld over the plate surface, random
excitation in band 3500}4500 Hz.
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Figure 10. Plate test: energy distribution along a section, passing through the power injection
point, harmonic excitation at 4000 Hz.

Figure 11. Plate test: energy distribution along a section, passing through the power injection
point, random excitation in band 3500}4500 Hz.
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Figure 12. Plate test: equation error versus k for harmonic excitation at 4000 Hz.

Figure 13. Plate test: equation error versus k for random excitation in band 3500}4500 Hz.
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case; on the contrary in the plate case relevant #ow errors are present even when the
k parameter is appreciably high. Moreover, it is important to point out that in this
last region the cell size (20 cm) approaches dimensions comparable with those of
the whole plate.

These can be considered quite typical results and the comparisons between the
beam and plate errors shows always this characteristic behaviour for any frequency
of excitation.

8. CONCLUSIONS

In this paper a systematic theoretical and experimental analysis of the energy
transfer between parts of a continuous structural system has been presented. The
experiments were designed with the aim of discovering di!erences in the energy
#ow rate between one- and two-dimensional systems, as suggested by the
theoretical approach developed in sections 3 and 4.

The di!erent behaviours of the beam and of the plate are evident. The theoretical
analysis explains that this di!erence is due to the existence of two di!erent energy
components: the coincident and the interference wave energy.

In the beam, only waves travelling in one direction are present. Thus, their
mutual interaction generates only the coincident wave energy "eld. This
component has the following basic property: an asymptotic thermal behaviour in
the medium and in the large-scale range is observed; on the contrary in the
small-scale range (k(1) a non-thermal e!ect is still present.

The experimental results wholly con"rm the theoretical analysis.
For two-dimensional systems, two energy components are simultaneously

present: the coincident and the interference wave energies.
Since the "rst component reveals exactly the same nature of the energy met in the

beam case, the second one is responsible for the di!erent mechanism of energy
propagation between one- and two-dimensional structures. The energy due to the
interference between waves propagating in di!erent directions (iwe), is
a non-thermal contribution superimposed to the thermal one. Its presence inhibits
the thermal mechanism of transmission in the medium-scale range, where the
non-thermal component has the same order of magnitude as that of the thermal
one. In this case, the non-thermal behaviour persists up to higher values of the scale
factor, depending on the loss coe$cient (section 5). Therefore, for plates the
following mechanism of transmission is revealed: a non-thermal behaviour in the
small- and medium-scale range is observed. In the large-scale range the thermal
behaviour is slowly increased; however this asymptotic tendency shows that the
non-thermal component is largely dominant in the whole medium-scale range;
moreover, for random excitation, no signi"cant #ow error reduction is observed,
even in the high scale range.

The theoretical results seem to match the experimental evidence very
satisfactorily, especially when the beam is compared with the plate.

The analysis developed is in agreement with some results obtained in reference
[29, 37], where an interesting check of the thermal power #ow analysis was carried



THERMAL ANALOGY IN WAVE ENERGY TRANSFER 281
out for a beam and a complex structure similar to a sti!ened plate. The beam case
matches very well the thermal power #ow prediction, while, in the second case, the
authors found a relevant discrepancy between theoretical prediction and
measurements.

About the applicability of the thermal analogy to the analysis of two- and
three-dimensional structures, the feeling of the authors is that an alternative
constitutive energy relationship must be investigated. Although the intuition contained
in the thermal analogy is fascinating, it is likely that the thermal power #ow takes into
account only a "rst order contribution of a more complicated phenomenon.
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APPENDIX A

The expression for the #ow error is found by using equation (1):
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The power #ow error, de"ned by equation (7), assumes therefore the form
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In the present analysis the constant f is determined through the least-square
procedure described in section 4. However, it can be numerically veri"ed that this
value is approximately given by f+8u/k2

B
g, with the data considered in the

experimental case. Thus one has
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The last relationship is easily determined once a Taylor expansion up to the second
order in terms of g of enkg#e~nkg!2 is performed (the damping factor is actually
small, i.e. g"0)05%0)1). Therefore, by substitution of the last relationship in
equation (A1), equation (8) is obtained:
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